LOGGING WHILE TRIPPING - LWT INTRODUCTION

2016

CORDAX EVALUATION TECHNOLOGIES INC.

WWW.CORDAX.COM

CORDAX EVALUATION TECHNOLOGIES

ordax helps clients optimize the producibility of their wells. Utilizing its unique Logging While TrippingTM (LWTTM) technology, quality open hole formation evaluation data is economically acquired from vertical, highly deviated, and horizontal well trajectories while reducing operational risks and virtually eliminating lost-in-hole exposure. Petrophysical measurements can be integrated with well information (drilling data, mud logs, pore pressure) using Cordax's proprietary Zone GraderTM software to provide an interpretation that optimizes completion and fracking strategies, improving well producibility.

CORDAX

CORDAX - LINKING DRILLING TO PRODUCIBILITY

- drilling wells faster
- drilling longer laterals
- more geometric stages
- bigger fracks

Well Construction Optimization

Cordax LWT™

Well Producibility Optimization Cordax Zone Grader™

Constructing **Producible Wells**

- accurately ID zones
- custom stage selection
- efficient stimulation
- superior production

LWT™ - LOGGING WHILE TRIPPING™

Patented and industry proven formation evaluation technique providing cost effective open hole logs with virtually no extra rig time and fewer operational risks (LIH) than

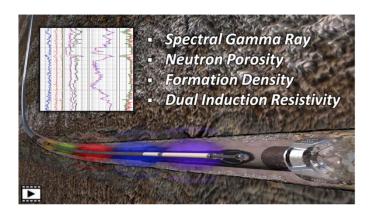
- ✓ API calibrated measurements
- Fully accepted by regulatory agencies

Innovative Deployment & Conveyance

Tools pumped down for measurement on trip out of well

alternate logging methods.

- Virtually no extra rig time required
- Allows logging of any well trajectory
- No additional trip or hole conditioning required
- Measuring on trip out of well
- Battery/Memory power, no wireline


Secure Logging & Full Well Control

- Tools and radioactive sources safely located inside the drill pipe (LWT collar) during deployment and logging.
- Protected and fully retrievable at any time
- Pipe rotation and circulation at any time during operation
- Limited LIH risk exposure

Well Applications & Hole Conditions:

- First run in well
- Complex trajectory
- Horizontal wells
- Lost Circulation

- Bridged wells
- Underbalanced drilling
- Swelling formations
- Well previews

CORDAX

LWT™ TECHNOLOGY & COMPANY HISTORY

2003-2010

- LWT Technology and patent acquired
- Development and commercialization

2013

- Expanded in the Bakken (USA)
- Reached job milestone 400 jobs successfully performed

2015

- Frist job performed in Indonesia
- Reached job milestone 600 jobs successfully performed

2017

- Introduction of new measurements
- Further international expansion

2003 - 2010

2011

2012

2013

2014

2015

2016

2017

1

2011-2012

- First full deployment year in Canada including triple-combo measurements
- First job performed in the USA (December 2012)

2014

- Shift in U.S. operations from North Dakota to Oklahoma City.
- Awarded significant work with Indonesian state oil company for 2015.
- First job performed in Australia

2016

- May 1st CORDAX purchases DATALOG
- July first job to be performed in Mexico
- August first job to be performed in Congo
- Q3 introduction of steel collar resistivity

LWT™ - INDUSTRY PROVEN TECHNOLOGY

- Proven field execution with over 650 successful jobs performed as of October 2016.
- Data qualified with successful "logoffs" against conventional wireline
- Industry leading Client List Including:

VALUE APPLICATIONS

Formation Evaluation Optimization

Cordax LWT™

Application

 Formation Evaluation method replacing wireline, LWT, TBL, and pipe conveyed OH logging methods

Benefits

- Wireline quality petrophysical data acquired during routine trip out of well
- Eliminates bridging and lost-in-hole (LIH) exposure versus other methods
- No extra pipe trip or hole conditioning
- Data acquisition in any well trajectory
- Tools pumped into BHA only when required, reducing wear and risk

Well Construction Optimization

Cordax LWT™

Application

- Casing point detection
- Evaluate Multi Laterals
- Kick-off point detection in build section

Benefits

- Deployment at any point during drilling operations
- Virtually invisible to drilling and well construction activities
- Rig time savings by reducing extra trips
- Allows timely completion decisions
- Incorporates well data such as mud logs, gas, ROP, pore pressure

Well Producibility Optimization

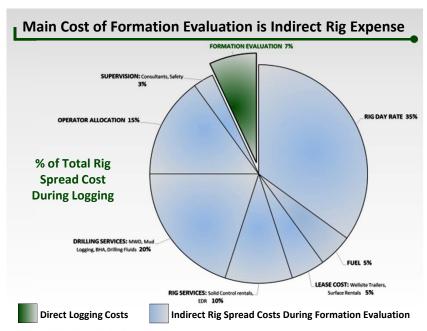
Cordax Zone Grader™

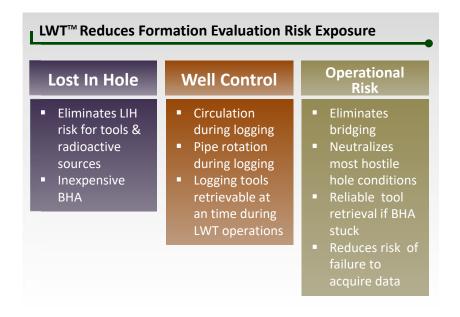
Application

- Frack strategy optimization
- Completion design optimization
- Optimal zone selection

Benefits

- Accurately locate and plan frack stages incorporating well parameters with LWT acquired Neutron, Density, Resistivity and Spectral Gamma Ray
- Providing the physical property data necessary for production optimization
- Compete geological model and update reserve calculation in resource plays

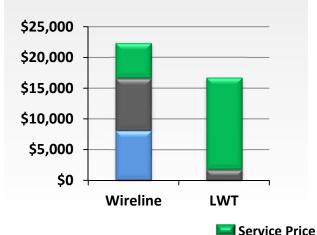




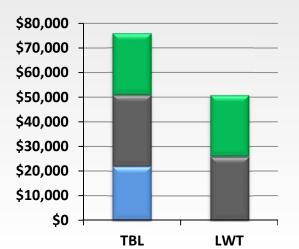
LWT FORMATION EVALUATION OPTIMIZATION

Objective:

LWT[™] acquires quality formation evaluation data in vertical, highly deviated, unstable and horizontal well bores by replacing Wireline Logging, Outside-the-Bit Logging, Pipe Conveyed (PCL,TLC) and Logging While Drilling.


TOTAL COST OPTIMIZATION & RISK REDUCTION

Cordax LWT™


Wireline Replacement

- Up to 25% Total Cost reduction
- Full well control during operations
- Elimination of > \$400,000 Wireline LIH potential and radioactive sources
- Less potential for hole deterioration before casing run

I Thru-Bit Logging Replacement

- Up to 30% Total Cost reduction
- Better well control during operations
- Less risk of tool damage and LIH
- No dedicated logging trip needed

LWD Logging Replacement

- Up to 40% Total Cost reduction
- Elimination of > \$1,000,000 LWD LIH potential
- Better data quality, no drilling sliding issues

e Rig Time Cost (Logging)

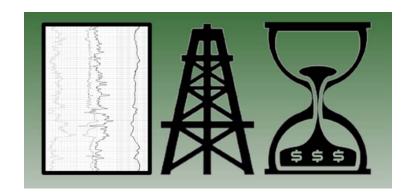
Rig Time Cost (Hole Prep)

Background

- North America- Horizontal Well
 Hole: 77/8 in (200mm)
 Depth: 13,238ft (4,035m)
- LWT was mobilized to evaluate the horizontal and vertical sections of the well with one run, prior to running cemented liner
- Wireline considered too risky in vertical section
- Horizontal section considered high risk and rig time too expensive for outside-the-bit and pipe conveyed logging methods

Operation

- The LWT collars were inserted above the MWD gear on the final bit trip
- Final leg of the well was drilled, followed by pumping down the LWT tools and logging the entire well


Achievements

 Providing formation evaluation on the bit trip, rather than dedicated run, allowed the operator to save over 36 hours (est. \$108,000) in rig time compared to other logging methods

Client Statement

 "The LWT system negated the need for separate vertical and horizontal logging runs saving significant rig time."

- Drilling Lead

10

WELL CONSTRUCTION OPTIMIZATION

Objective:

Reduce total well construction cost with LWT[™] by being able to make informed decisions.

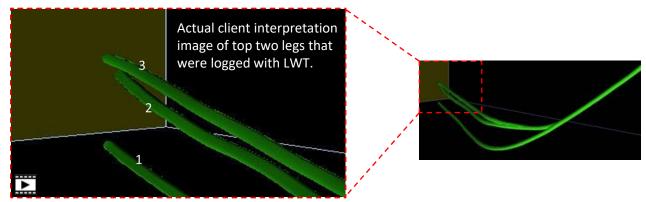
CASE HISTORY: LOGGING MULTI-LEG LATERAL WELL

Background

- 3 leg multi-lateral well drilled in July 2013
- Operator was expecting to return to surface in order to gather well logs through each leg
- LWT was mobilized to gather data in the 2 most porous legs on a single run, without returning to surface
- Other outside-the-bit horizontal logging methods unable to allow two consecutive runs in separate legs

Operation

- The final leg was drilled with the LWT composite collar
- LWT tools were pumped down into leg #3 and logged to the leg intersections
- BHA was re-orientated, run into leg #2, and logged to surface


Achievements

- No additional trip to surface between every logging runs was required
- Estimated rig time savings was 24 hours, which equated to \$40,000 to the client

Client Statement

- "Very impressed with the ease of operation"
- "Data was used for future well placement to ensure they were producing from the most porous zone"

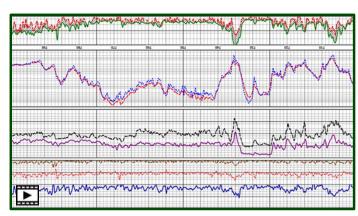
- Engineering Lead

Background

- Fractured reservoirs result in an unstable borehole, making them a high risk for typical open hole logging techniques
- Operator wasn't expecting to be able to acquire logs to accurately locate the high porosity zone due to hole conditions
- LWT was mobilized to gather data triple combo data through the heel of the well

Operation

- The tectonically stressed area was conditioned for a total of 10 hrs with the LWT collars in the BHA
- Once on TD the tools were deployed and rotation was necessary while logs were gathered on the trip out of the well

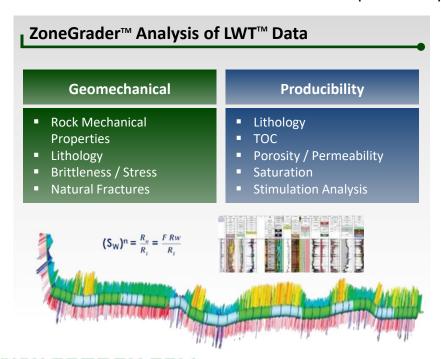

Achievements

- Logs were generated while the operator safely rotated the drill pipe through the stressed area
- With tools safely inside pipe the operator risk for bridging or losing tools in the stressed area was eliminated

Client Statement

"We were able to confirm well placement in the high porosity streak and accurately set casing as planned with out lost in hole risk."

- Team Lead


WELL PRODUCIBILITY OPTIMIZATION

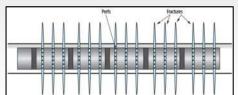
Cordax Zone Grader™

Objective:

Increase well producibility by enhancing completion effectiveness through optimized Frac and Completion designs. Invest in data to make informed decisions to increase well producibility and lower the well construction cost per barrel produced

LWT™ Reduces Formation Evaluation Risk Exposure **Operational Lost In Hole Well Control** Risk Eliminates LIH Circulation Eliminates risk for tools & during logging bridging Pipe rotation radioactive during logging most hostile sources Inexpensive Logging tools hole conditions retrievable at Reliable tool **BHA** an time during retrieval if BHA LWT operations Reduces risk of failure to acquire data

INDUSTRY EVOLUTION



Status Quo – Geometrical Completion Design

- Geometrically spaced clusters without regard to heterogeneity of the formation
 - Clusters may not be fractured adequately
 - Increased probability of screen-outs
 - Uneven propant distribution
 - Not prioritizing the sweet spots
 - Increased fracture initiation time from fracturing more ductile rock

"Production logs indicate that, due to sub-optimized completions, 30%–40% of perforation clusters contributed no production whatsoever, leaving considerable reserves in place."

- OILPRO, January 8, 2016

New Optimized Completion Design

 Design based on Geomechanical and Producibility criteria for perforation placement and Frac design

	Geomechanical	Producibility	
i	Rock Mechanical Properties Lithology Brittleness / Stress Natural Fractures	LithologyTOCPorosity / PermeabilitySaturationStimulation Analysis	

- Only an indication of geomechanical formation properties can derived from drilling and mud logging data
- Proper grading of the well requires additional data: resistivity, density, porosity, spectral gamma ray

Drilling Data

Mud Logs

- Mud log lithology

- Grain size, etc.

- Gas shows

- WOB, RPM, ROP

- MWD/GR

- MSE

(Invisible to drilling operations)

LWT ™ - Resistivity - Formation Density - Neutron Porosity

Zone Grader™

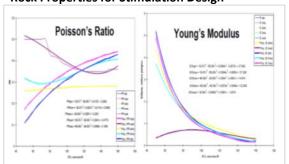
- Geomechanical
 - Rock Mechanical Properties
 - Lithology
 - Brittleness / Stress
 - Natural Fractures
- Producibility
 - Lithology
 - TOC
 - Porosity / Permeability
 - Saturation
 - Stimulation Analysis

Optimized Frac & Completion Design

16

Well Producibility Optimization

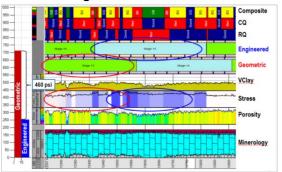
SPE CASE STUDIES: LOG OPTIMIZED COMPLETIONS



SPE International

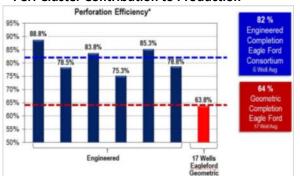
SPE 108139

A Composite Determination of Mechanical Rock Properties for Stimulation Design



SPE 120591

Measurement Techniques for US Land Shale HydroCarbon Plays


SPE 166242

Eagle Ford Completion Optimization Using Horizontal Log Data

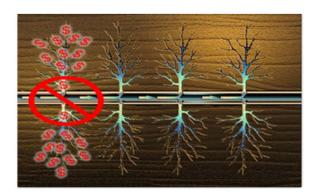
SPE 138427

Perf Cluster Contribution to Production

Background

- Indonesia High Angle Well Hole: 216mm (81/2 in) Depth: 1,550m (5,085ft)
- LWT was mobilized to log the well to acquire additional data to complete an engineered completion design
- Wireline not run due to unstable borehole conditions

Operation

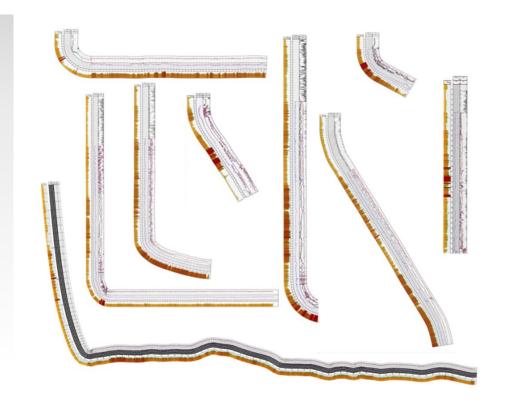

- LWT collars were inserted into the BHA and the hole was conditioned while tripping in
- The LWT tools were pumped down and logged out while tripping to surface

Achievements

- No additional rig time was required as the operator was conditioning the well during this trip
- Completed the analysis on the target formation based on both producibility and reservoir quality
- Eliminated risk of lost logging tools using LWT method

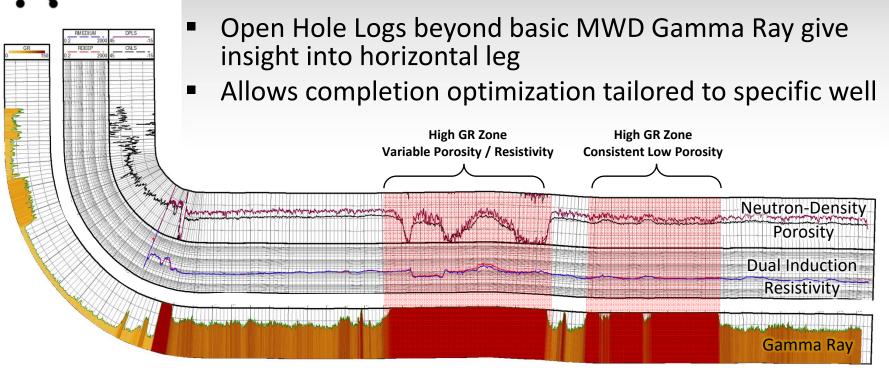
Client Statement

- "The final results, an engineered completions analysis, allowed us to increase well production from 900bbl/d to 1200 bbl/d when comparing to offset wells"
 - Engineering Lead


OPEN HOLE LOGS IN ANY WELL

Well Geometry

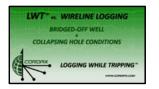
- horizontal
- deviated
- vertical


Tough Logging Conditions

- complex trajectory
- horizontal wells
- lost circulation
- swelling formations
- bridged wells
- underbalanced drilling

FULLY UNDERSTAND YOUR LATERAL

LWT OPERATIONAL ANIMATIONS

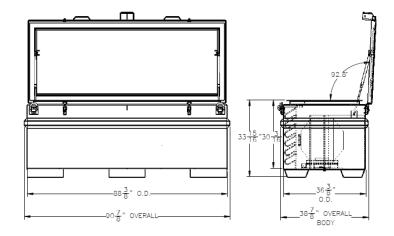

You Tibe Channel: cordaxLWT

LWT Overview Animation: https://youtu.be/rWITGsktV2Q

LWT Horizontal Logging Animation: https://youtu.be/rWITGsktV2Q

LWT vs Wireline Animation: https://youtu.be/mlcNYkvnac0

Animations also available on website: www.cordax.com


CORDAX

INTERNATIONAL LWT OPERATIONAL UNITS

MWD style field transport container:

- uphole equipment
- redundant downhole tools
- nuclear sources
- land or offshore operations
- LWT collars transported separately

NORTH AMERICA LWT FIELD UNITS

Customized Ford F-450 4x4 HD

- redundant uphole equipment
- redundant downhole tools
- nuclear sources
- LWT collars transported on heavy duty roof racks
- DOT approved sleeper bunk
- integrated processing office with second sleeper bunk
- legal for all seasonal road bans
- small rig site footprint

Formation Evaluation

Optimization

Cordax LWT™

Cordax Evaluation Technologies

Cost effective Formation Evaluation

Lowering the well construction cost per barrel produced Informed decisions to increase well Producibility

Google Search

I'm Feeling Lucky